Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ming-Lin Guo

College of Materials and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China

Correspondence e-mail: guomlin@tjpu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.010 Å R factor = 0.056 wR factor = 0.161 Data-to-parameter ratio = 7.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Piperazinediium 3-nitrophthalate dihydrate

Received 14 June 2004

Accepted 17 June 2004

Online 26 June 2004

The title salt, $C_4H_{12}N_2^{2+}\cdot C_8H_3NO_6^{2-}\cdot 2H_2O$, crystallizes in the orthorhombic space group *Pna2*₁. All O atoms of the 3-nitrophthalate anion are involved in hydrogen bonding with the piperazine dication and the water molecules of crystallization.

Comment

The present work is part of a structural study of piperazine and its derivatives (Guo, 2004a,b,c). The author has recently reported the crystal structures of *N*-[4-(4-methylpiperazin-1ylsulfonyl)phenyl]acetamide monohydrate (Guo, 2004a) 2-(4methylpiperazin-4-ium-1-ylcarbonyl)benzoate monohydrate (Guo, 2004b) and 4-ammonio-1-methylpiperazin-1-ium oxalate dihydrate (Guo, 2004c). The structure of the salt piperazinediium 3-nitrophathalate dihydrate, (I), is reported here.

A view of the hydrogen bonding of (I) and its numbering scheme are illustrated in Fig. 1. The piperazinediium cation adopts a normal chair conformation, as reported previously

Figure 1

The structure of the title salt, (I), with the atom-numbering scheme, showing 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii and hydrogen bonds are indicated by dashed lines.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 Packing diagram of (I), showing the hydrogen-bond interactions (dashed lines)

(Kuppayee *et al.*, 1999). The bond distances and angles in the cation, the anion and water molecules are normal, within experimental error. Selected geometric parameters are shown in Table 1.

In the crystal structure, a dense hydrogen-bond network is built up (Fig. 2 and Table 2).

Experimental

Crystals of the title salt were obtained from a 1:1 aqueous solution of piperazine and 3-nitrophthalic acid by slow concentration over a period of 3 d.

Crystal data

$C_4H_{12}N_2^{2+}C_8H_3NO_6^{2-}H_2O$	Mo $K\alpha$ radiation
$M_r = 333.30$	Cell parameters from 993
Orthorhombic, <i>Pna</i> 2 ₁	reflections
a = 18.436 (8) Å	$\theta = 2.4-26.0^{\circ}$
b = 6.551 (3) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 24.274 (10) Å	T = 293 (2) K
$V = 2932 (2) \text{ Å}^3$	Prism, colorless
Z = 8	$0.20 \times 0.16 \times 0.14 \text{ mm}$
$D_x = 1.510 \text{ Mg m}^{-3}$	
e e e e e e e e e e e e e e e e e e e	

Data collection

Bruker SMART CCD area-detector	3053 independent reflections
diffractometer	2278 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.062$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -22 \rightarrow 18$
$T_{\min} = 0.954, \ T_{\max} = 0.982$	$k = -6 \rightarrow 8$
15732 measured reflections	$l = -30 \rightarrow 27$

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.0991P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.056 & w + 0.5343P] \\ wR(F^2) = 0.161 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.04 & (\Delta/\sigma)_{\rm max} = 0.004 \\ 3053 \ \mbox{reflections} & \Delta\rho_{\rm max} = 0.48 \ \mbox{e} \ \mbox{Å}^{-3} \\ 415 \ \mbox{parameters} & \Delta\rho_{\rm min} = -0.25 \ \mbox{e} \ \mbox{Å}^{-3} \\ \mbox{H-atom parameters constrained} \\ \end{array}$

Selected geometric parameters (Å, °).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3-C8	1.246 (6)	O9-C16	1.258 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4-C8	1.237 (6)	O10-C16	1.252 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5-C6	1.216 (9)	O11-C14	1.278 (9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6-C6	1.248 (7)	O12-C14	1.240 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05 66 06	126.0 (6)	012 C14 011	122.0 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04-C8-O3	126.9 (6)	O12 - C14 - O11 O10 - C16 - O9	125.9 (7) 126.0 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C5-C6-O5	149.7 (6)	C15-C13-C14-O12	157.2 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-C5-C6-O5	-28.0(7)	C12-C13-C14-O12	-24.5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4-C5-C6-O6	-25.6(7)	C15-C13-C14-O11	-26.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-C5-C6-O6	156.6 (5)	C12-C13-C14-O11	152.3 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C5-C7-C8	-1.2(7)	C14-C13-C15-C16	1.0 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C7-C8-O4	103.8 (6)	C13-C15-C16-O10	-79.0 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5-C7-C8-O4	-77.1 (7)	C9-C15-C16-O10	103.0 (6)
C5-C7-C8-O3 102.9 (6) $C9-C15-C16-O9$ -73.6 (7)	C1-C7-C8-O3	-76.2(6)	C13-C15-C16-O9	104.4 (6)
	C5-C7-C8-O3	102.9 (6)	C9-C15-C16-O9	-73.6 (7)

Table 2		
Hydrogen-bonding geometry ((Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N3-H3A····O3 ⁱ	0.90	1.92	2.765 (6)	156
N3−H3B···O6	0.90	1.77	2.648 (6)	166
$N4-H4A\cdots O5^{ii}$	0.90	1.92	2.799 (6)	164
$N4-H4B\cdots O13^{ii}$	0.90	1.83	2.730 (6)	175
$N5-H5A\cdots O12^{iii}$	0.90	1.79	2.664 (6)	165
N5−H5 <i>B</i> ···O9	0.90	1.89	2.760 (6)	161
$N6-H6B\cdotsO11^{iv}$	0.90	1.92	2.793 (6)	164
$N6-H6A\cdotsO14^{ii}$	0.90	1.81	2.708 (6)	172
$O13-H13A\cdots O4^{i}$	0.85	1.89	2.729 (6)	167
O13−H13B···O11	0.85	1.96	2.792 (6)	166
$O14-H14A\cdots O5$	0.85	1.89	2.714 (6)	164
O14−H14B···O10	0.85	1.86	2.707 (6)	173
$O15-H15A\cdots O4$	0.85	2.04	2.858 (6)	161
$O15-H15B\cdots O3^{ii}$	0.87	2.47	3.036 (6)	124
$O15-H15B\cdots O5^{ii}$	0.87	2.53	2.997 (7)	115
O16-H16A···O9	0.85	2.18	3.007 (6)	166
$O16-H16B\cdots O10^{ii}$	0.85	2.03	2.861 (6)	167

Symmetry codes: (i) $x - \frac{1}{2}, \frac{3}{2} - y, z$; (ii) x, y - 1, z; (iii) $\frac{1}{2} + x, \frac{3}{2} - y, z$; (iv) $\frac{1}{2} + x, \frac{1}{2} - y, z$.

The value of the absolute structure parameter (Flack, 1983) of the title salt is meaningless because Mo radiation was used and no atoms heavier than O are present. Therefore, in the absence of anomalous dispersion effects, 1678 Friedel-pair reflections were merged before the final refinement. The H atoms of the water molecule were found in difference Fourier maps. However, during refinement, they were fixed at O-H distances of 0.85–0.87 Å and their $U_{\rm iso}$ values were set at 1.2 $U_{\rm eq}$ (O). The H atoms of N-H and C-H groups were treated as riding, with N-H = 0.90 Å and C-H = 0.93–0.97 Å, and $U_{\rm iso} = 1.2U_{\rm eq}$ (N or C).

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

Bruker (1997). SMART (Version 5.051) and SAINT (Version 5.A06). Bruker AXS Inc., Madison, Wisconsin, USA. Flack, H. D. (1983). Acta Cryst. A**39**, 876–881. Guo, M.-L. (2004*a*). Acta Cryst. E**60**, 0736–0737. Guo, M.-L. (2004*b*). Acta Cryst. E**60**, 0738–0739. Guo, M.-L. (2004*c*). Acta Cryst. E**60**, 0576–0577. Kuppayee, M., Kumaran, D., Ponnuswamy, M. N., Kandaswamy, M., Violet, M. J., Chinnakali, K. & Fun, H.-K. (1999). Acta Cryst. C55, 2147–2149.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.